
Appendix D11

Sullivan’s rigidity theorem

Theorem D11.1, first proved by Sullivan [81], is both stronger and weaker
than McMullen’s rigidity theorem, Theorem 12.3.1. It is stronger because
it does not require that the injectivity radius of H3/� be bounded above in
its convex core. It is weaker because it requires that the group be finitely
generated.

Let � be a finitely generated Kleinian group. The Ahlfors finiteness
theorem (Theorem 12.2.2) deals with �-invariant Beltrami forms carried
by the set of discontinuity ⌦�. Sullivan’s rigidity theorem concerns those
carried by the limit set ⇤�. This is only interesting if the limit set has
positive area. In many cases this is false (all geometrically finite groups
with ⌦� 6= ;, for instance; see Theorem 12.2.7), but in other cases the
limit set does have positive area. For example, if the limit set is the entire
Riemann sphere @H3, the measure of ⇤� is of course nonzero; this case is
the main one of interest here.

inTheorem D11.1 (Sullivan’s rigidity theorem) If � is a finitely gen-
erated Kleinian group, the limit set ⇤� carries no nontrivial �-invariant
Beltrami forms.

The following example, due to Curt McMullen, shows that the hypothesis
that � be finitely generated is necessary: we describe an infinitely generated
group such that there are invariant nontrivial Beltrami forms (lots of them)
carried by the limit set.

Example D11.2 We will use the upper halfspace model H3 of hyperbolic
space, bounded by C = C[ {1} and parametrized by (z, t) 2 C⇥ (0,1).

Let i 7! Di be a sequence of disjoint discs in C with radii ri satisfying
ri  1. We will suppose that the union of the Di is dense in C, but that
C�[Di has positive measure. It is easy to construct such things, essentially
the same way one builds Cantor sets in R of positive measure.

Each convex hull bDi in H3 is bounded by a hyperbolic plane Pi (a hemi-
sphere in Figure D11.1). Let e� be the group generated by reflections ⇢i

in all the Pi, and let � ⇢ e� be the subgroup of index 2 consisting of
orientation-preserving isometries of H3.

The group e� is discrete (hence � is also): the set Y := H3 � [i
bDi is a

fundamental domain for e�. Indeed, all the reflections of a point y 2 Y in one
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of the Pi have smaller t-coordinate than the t-coordinate of y, and further
reflections will just make the t-coordinates smaller yet. A fundamental
domain for � is given by Y [ ⇢i(Y ).

Set X := Y \ C, i.e., the complement of all the open discs Di. Let us
see that X is a subset of the limit set ⇤�, hence also of ⇤e�. Indeed, any
x 2 X can be approximated by a sequence D1,D2, . . . ; so for any y 2 Y ,
the sequence y, ⇢1(y), ⇢2(⇢1(y)), . . . tends to x; see Figure D11.1.
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Figure D11.1 Every x 2 X
is in the limit set ⇤�: it is an
accumulation point of the or-
bit of y. Each blue dome is
the convex hull bDi of the disc
Di.

Thus we have X ⇢ ⇤� and given any Beltrami form � on X, the Beltrami
form

e� :=
⇢ P

�2� �⇤� on
S

�2� �(X)
0 otherwise

D11.1

on P1 is a nontrivial �-invariant Beltrami form carried by ⇤�. 4

The proof of Sullivan’s rigidity theorem will require a discussion of con-
servative and dissipative actions of groups on probability spaces. Let
(X,A, µ) be a probability space acted on by a countable group � of ab-
solutely continuous transformations1.

inDefinition D11.3 (Conservative and dissipative group action)
The action of � on a measurable subset Y ⇢ X is conservative if for any
measurable subset B ⇢ Y with µ(B) > 0, the set of � 2 � such that
µ(B \ �(B)) > 0 is infinite.

The action of � on an invariant measurable subset Z ⇢ X is dissipative
if there is a measurable subset B ⇢ Z such that µ(B \ �(B)) = 0 for all
� 2 �� {id} and

[

�2�

�(B) = Z. D11.2

1i.e., a group of measurable transformations � : X ! X such that �⇤µ = hµ
for some h 2 L1(X,A, µ).


