Appendix D11 Sullivan's rigidity theorem

Theorem D11.1, first proved by Sullivan [81], is both stronger and weaker than McMullen's rigidity theorem, Theorem 12.3.1. It is stronger because it does not require that the injectivity radius of \mathbb{H}^3/Γ be bounded above in its convex core. It is weaker because it requires that the group be finitely generated.

Let Γ be a finitely generated Kleinian group. The Ahlfors finiteness theorem (Theorem 12.2.2) deals with Γ -invariant Beltrami forms carried by the set of discontinuity Ω_{Γ} . Sullivan's rigidity theorem concerns those carried by the limit set Λ_{Γ} . This is only interesting if the limit set has positive area. In many cases this is false (all geometrically finite groups with $\Omega_{\Gamma} \neq \emptyset$, for instance; see Theorem 12.2.7), but in other cases the limit set does have positive area. For example, if the limit set is the entire Riemann sphere $\partial \mathbb{H}^3$, the measure of Λ_{Γ} is of course nonzero; this case is the main one of interest here.

Theorem D11.1 (Sullivan's rigidity theorem) If Γ is a finitely generated Kleinian group, the limit set Λ_{Γ} carries no nontrivial Γ -invariant Beltrami forms.

The following example, due to Curt McMullen, shows that the hypothesis that Γ be finitely generated is necessary: we describe an infinitely generated group such that there are invariant nontrivial Beltrami forms (lots of them) carried by the limit set.

Example D11.2 We will use the upper halfspace model \mathbf{H}^3 of hyperbolic space, bounded by $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ and parametrized by $(z, t) \in \mathbb{C} \times (0, \infty)$.

Let $i \mapsto D_i$ be a sequence of disjoint discs in \mathbb{C} with radii r_i satisfying $r_i \leq 1$. We will suppose that the union of the D_i is dense in \mathbb{C} , but that $\mathbb{C} - \bigcup D_i$ has positive measure. It is easy to construct such things, essentially the same way one builds Cantor sets in \mathbb{R} of positive measure.

Each convex hull \widehat{D}_i in \mathbb{H}^3 is bounded by a hyperbolic plane P_i (a hemisphere in Figure D11.1). Let $\widetilde{\Gamma}$ be the group generated by reflections ρ_i in all the P_i , and let $\Gamma \subset \widetilde{\Gamma}$ be the subgroup of index 2 consisting of orientation-preserving isometries of \mathbf{H}^3 .

The group $\widetilde{\Gamma}$ is discrete (hence Γ is also): the set $Y := \mathbf{H}^3 - \bigcup_i \widehat{D}_i$ is a fundamental domain for $\widetilde{\Gamma}$. Indeed, all the reflections of a point $y \in Y$ in one

of the P_i have smaller *t*-coordinate than the *t*-coordinate of *y*, and further reflections will just make the *t*-coordinates smaller yet. A fundamental domain for Γ is given by $Y \cup \rho_i(Y)$.

Set $X := \overline{Y} \cap \overline{\mathbb{C}}$, i.e., the complement of all the open discs D_i . Let us see that X is a subset of the limit set Λ_{Γ} , hence also of $\Lambda_{\widetilde{\Gamma}}$. Indeed, any $x \in X$ can be approximated by a sequence D_1, D_2, \ldots ; so for any $y \in Y$, the sequence $y, \rho_1(y), \rho_2(\rho_1(y)), \ldots$ tends to x; see Figure D11.1.

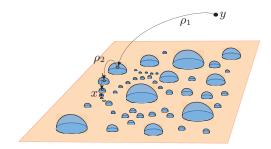


FIGURE D11.1 Every $x \in X$ is in the limit set Λ_{Γ} : it is an accumulation point of the orbit of y. Each blue dome is the convex hull \hat{D}_i of the disc D_i .

Thus we have $X \subset \Lambda_{\Gamma}$ and given any Beltrami form β on X, the Beltrami form

$$\widetilde{\beta} := \begin{cases} \sum_{\gamma \in \Gamma} \gamma^* \beta & \text{on } \bigcup_{\gamma \in \Gamma} \gamma(X) \\ 0 & \text{otherwise} \end{cases}$$
D11.1

on \mathbb{P}^1 is a nontrivial Γ -invariant Beltrami form carried by Λ_{Γ} . \triangle

The proof of Sullivan's rigidity theorem will require a discussion of *conservative* and *dissipative* actions of groups on probability spaces. Let (X, \mathcal{A}, μ) be a probability space acted on by a countable group Γ of absolutely continuous transformations¹.

Definition D11.3 (Conservative and dissipative group action) The action of Γ on a measurable subset $Y \subset X$ is *conservative* if for any measurable subset $B \subset Y$ with $\mu(B) > 0$, the set of $\gamma \in \Gamma$ such that $\mu(B \cap \gamma(B)) > 0$ is infinite.

The action of Γ on an invariant measurable subset $Z \subset X$ is *dissipative* if there is a measurable subset $B \subset Z$ such that $\mu(B \cap \gamma(B)) = 0$ for all $\gamma \in \Gamma - {\text{id}}$ and

$$\bigcup_{\gamma \in \Gamma} \gamma(B) = Z.$$
 D11.2

¹i.e., a group of measurable transformations $\gamma : X \to X$ such that $\gamma_* \mu = h\mu$ for some $h \in L^1(X, \mathcal{A}, \mu)$.