
9
Dynamics of polynomials

Chapters 9 and 10 concern dynamical systems. Dynamical systems come
in two flavors: continuous time (di↵erential equations) and discrete time
(iterations). Here we are concerned with discrete time. We take a map
f : X ! X (it is essential that the domain and codomain be the same) and
we consider sequences of iterates x, f(x), f(f(x)), . . . , which we think of as
time 0, time 1, time 2, . . . . We denote the nth iterate by f�n(x).1 The
study of these dynamical systems essentially consists of trying to describe
the behavior of such sequences.

If f : X ! X and g : Y ! Y are two dynamical systems and ' : X ! Y
satisfies ' � f = g � ', then for all n,

' � f�n = g�n � '. 9.0.1

This is a trivial but important application of associativity of composition:
for the first step in the iteration,

' � f�2 = (' � f) � f = g � (' � f) = g � g � ' = g�2 � '. 9.0.2

Thus the sequences n 7! f�n(x) and n 7! g�n
�
'(x)

�
correspond under '.

Such maps ' are the morphisms of dynamical systems, since they preserve
sequences of iterates. These morphisms are called semi-conjugacies; when
' is invertible, then ' � f = g � ' can be written f = '�1 � g � ' and ' is
a conjugacy between f and g.

Conjugacy is the notion of isomorphism for dynamical systems; dynami-
cal systems is all about establishing conjugacies between complicated maps
and simpler ones.

In this chapter we give an introduction to the dynamics of polynomials
p : C ! C. As soon as a polynomial has degree greater than 1, its iterates
become tremendously complicated. We won’t be able to find global conju-
gacies with simpler functions, but we will find local conjugacies and local
semi-conjugacies; examples include Theorems 9.1.6, 9.2.8, 9.2.12, 9.2.20,
and 9.4.1. These results will be used in Section 10.5 in the context of qua-
dratic polynomials, but here we avoid focusing on the quadratic case. Many
of the results (including all the local theory) are true for rational functions,
entire functions, and even functions meromorphic on C, but to keep the
chapter of reasonable length we have avoided that generality also.

1If Y ⇢ X, then f�1(Y ) is the inverse image of Y under f ; this is always
defined and never ambiguous. When f is invertible we will also write f�1 and
f�n for f�(�1) and f�(�n) and hope this will create no confusion with 1/f .
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36 Chapter 9. Dynamics of polynomials

9.1 Julia sets

In complex dynamics in one variable the fundamental object of study is the
Julia set .

inDefinition 9.1.1 (Julia set, filled Julia set) Let p be a polynomial
of degree d � 2. The Julia set Jp and the filled Julia set Kp are

Kp :=
�

z 2 C
�� the sequence z, p(z), p�2(z), . . . is bounded

 
Jp := @Kp

The sequence n 7! p�n(z) is called the orbit of z under p. The comple-
ment of the Julia set is often called the Fatou set .

It is distinctly easier to study the Julia set of a polynomial than the Julia
set of a more general mapping, because the Julia set of a polynomial is the
boundary of the filled Julia set. Rational functions that are not polynomials
have a Julia set but no filled Julia set.

Figure 9.1.1 represents six filled Julia sets Kp, colored black, for appro-
priate cubic polynomials. We chose d = 3 rather than d = 2 to avoid overlap
with Chapter 10, and because these exhibit a larger variety of behavior.

Each picture represents hundreds of millions of multiplications. How
were the pictures made? We began by choosing some number R, large
compared to the coe�cients of the polynomial (in this case, R = 100 but a
smaller R would have done). The colors represent “rates of escape”: if the
orbit n 7! p�n(z) tends to infinity, there is a first n for which |p�n(z)| > R;
each dot is colored according to the number n. The picture will not depend
in any essential way on R. If |f�n(z)| > 10, then |f�(n+1)(z)| ⇠ 1000 and
|f�(n+2)(z)| ⇠ 109. When a point is well in the escape region, it really goes!

A more crucial issue is when to color a pixel black: how many iterations
do we make before giving up and deciding that a point will never escape?
How do we choose N such that if |f�N (z)| < R, we decide that z 2 Kf?
Figure 9.1.1 was made with N = 1000; di↵erent choices of N can produce
quite di↵erent pictures, at very di↵erent computational cost.

inProposition 9.1.2 The sets Kp and Jp are compact subsets of C.

Proof Set p(z) = adzd + ad�1zd�1 + · · · + a0 with ad 6= 0, and set

A = max {(|ad�1| + · · · + |a0|), 1} 9.1.1

Set R = max
n

2+A
|ad| , 1

o
. Then if |z| � R

|p(z)| � |ad||z|d �
�
|ad�1||zd�1| + · · · + |a0|

�
� |ad||z|d �A|z|d�1

� |z|d�1(|ad||z|�A) � 2|z|.
9.1.2
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Thus Kp ⇢ {z 2 C||z| < R}, so Kp is bounded, and

Kp =
1\

n=1

p�n
�
DR(0)

�
, 9.1.3

so it is an intersection of closed sets, hence closed. The boundary of a
compact subset is always compact, so Jp is compact. ⇤

Remark in the proof of Proposition 9.1.2, the 2 in 2+A
|ad| doesn’t have to be

2; any number > 1 will do. 4

a = .5, b = �.485 + .4i a = .5, b = �.67 + .44i a = .5, b = �.655 + .575i

a = .5, b = �.065 + .605i a = .5, b = �.105 + .595i a = .5, b = �.145 + .57i

Figure 9.1.1 Two sets of three pictures of filled Julia sets for cubic polynomials,

all written in the form p(z) = z3 � 3a2z + b, for |Re z|  2, |Im z|  2. The

pictures in each row correspond to polynomials whose coe�cients are quite close,

although the filled Julia sets are very di↵erent. The sets Kp are black; the colors

represent “rate of escape to infinity”. These pictures also illustrate Theorem

9.1.6, which says that the behavior of critical points under iteration is essential

to understanding the sets Kp. The critical points of p are ±a = ±1/2. In the left

pictures both critical points have bounded orbits, so the filled Julia sets Kp are

connected. In both middle pictures one critical point has a bounded orbit and

the other not; the sets Kp are not connected, but some components of Kp are not

points (and are themselves fairly complicated in the bottom center picture). For

the polynomials pictured at right, both critical points escape, and Kp = Jp is a

Cantor set.

If f is a rational function or an entire function, the Julia set of f is defined
as the set of non-normality of the sequence f, f�2, f�3, . . . . Proposition 9.1.3
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shows that the definitions are consistent: for polynomials, the boundary of
the filled Julia set is indeed the set of non-normality. In this context, a
sequence of functions that converges locally uniformly to infinity is normal,
i.e., normal as a sequence of functions with values in P1.

inProposition 9.1.3 Let p be a polynomial of degree d � 2. Then z /2 Jp

if and only if z has a neighborhood on which the sequence p, p�2, p�3, . . .
is normal.

Proof If z /2 Jp, then either z is in the interior of Kp or z is not in Kp.
In the first case, z has a neighborhood U ⇢

�
Kp and the sequence n 7! p�n

is bounded on U , hence normal. In the second case, there is some N such
that |p�N (z)| > R (where R is as in the proof of Proposition 9.1.2). There
is then a neighborhood U of z such that |p�N (w)| > R for all w 2 U . Since
for all n � N we then have |p�n+1(w)| > 2|p�n(w)|, the sequence n 7! p�n

converges uniformly to 1 on U .
Conversely, if z 2 Jp, then every neighborhood of z contains points

with bounded orbits (including z itself), and open subsets on which the
sequence n 7! p�n converges to infinity, so the sequence has no subsequence
converging uniformly on compact subsets. ⇤

inProposition 9.1.4 1. For any polynomial p of degree d � 2, both Kp

and Jp are totally invariant:

p(Jp) = Jp, p�1(Jp) = Jp, p(Kp) = Kp, p�1(Kp) = Kp.

2. Conversely, if X ⇢ C is a closed set satisfying p(X) = p�1(X) = X,
then either

a. X = {x} is a single point, p is conjugate to z 7! zd and x corre-
sponds to 0 under the conjugacy,

or

b. Jp ⇢ X.

Proof 1. The first part is obvious: a point z has a bounded orbit under
p if and only if the orbit of p(z) is bounded, which is true if and only if for
each z1 2 p�1(z) the orbit of z1 is bounded.

2. The second part requires Montel’s theorem. If X contains two or
more points, the sequence n 7! p�n of iterates omits these points, hence is
normal by Montel’s theorem, so Jp is a subset of X.

If X = {x} is a singleton, then x is a fixed point of p, and is the only
solution of p(z) = x. Thus p(z) = b(z�x)d+x for some b, i.e., p is conjugate
to Z 7! bZd. A further conjugacy, setting Z = W⌘ with ⌘d�1 = 1/b, makes
p conjugate to W 7!W d. ⇤


