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The classification of homeomorphisms
of surfaces

In this chapter we present and prove the first of Thurston’s theorems involv-
ing Teichmüller spaces: Theorem 8.1.4, which classifies homeomorphisms
of surfaces into three types: periodic, reducible, and pseudo-Anosov.

Understanding homeomorphisms and di↵eomorphisms of manifolds is a
central problem of mathematics. Even understanding homeomorphisms
and di↵eomorphisms of the circle is an immensely di�cult problem with
a huge literature. The 2-dimensional case is much harder yet; Thurston’s
theorem is probably the main result in the field. The theorem concerns
homeomorphisms up to homotopy, so it is in some sense crude, avoiding
all delicate local study; in exchange, it provides vital global information.
Moreover, the group of homotopy classes of homeomorphisms, also known
as the mapping class group, is of central interest in geometric group theory.
Here also Thurston’s theorem is of fundamental importance.

Section 8.1 states the classification theorem and defines the types of
homeomorphisms. Section 8.2 gives examples of periodic and reducible
homeomorphisms. Section 8.3 describes two families of pseudo-Anosov
homeomorphisms in addition to the Arnoux-Yoccoz homeomorphism. Sec-
tion 8.4 proves the classification theorem. Section 8.5 studies homeomor-
phisms with marked points. Finally, Section 8.6 explores what numbers
can be stretch factors of pseudo-Anosov homeomorphisms.

We will present a proof of the classification theorem due to Bers [6];
it is more in keeping with the style of this book than Thurston’s proof.
Thurston’s proof has been given in considerable detail by Fathi, Lauden-
bach, and Poenaru [31]; it is much longer and more elaborate.1

Thurston’s terminology was inspired by the classification of homeomor-
phisms of the torus.

Classification of homeomorphisms of the torus

Let T denote the torus T := R2/Z2. A matrix A 2 SL2 Z induces a
map R2 ! R2, which induces an orientation-preserving homeomorphism
fA : T ! T since AZ2 = Z2.

1Apparently Jakob Nielsen has some claim to having proved the result long
before Thurston. However, I have spoken with the people who know Nielsen’s
work best, and they say that he never made any definition similar to “pseudo-
Anosov”. Without it, no classification theorem seems possible.
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Conversely, the parametrized closed curves
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form a basis of the homology group H1(T ; Z) = Z2, and any orientation-
preserving homeomorphism f : T ! T gives a homomorphism f⇤ : Z2 ! Z2

that has a matrix A 2 SL2 Z. Lift f to ef : R2 ! R2; the straight line
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to efA
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descend to give a homotopy between f

and fA, and then Theorem C3.1 shows that f and fA are isotopic.
Thus the classification of homeomorphisms of T up to isotopy is the same

as the classification of elements of SL2 Z.
This classification leads to three cases: a matrix A 2 SL2 Z may have

complex nonreal eigenvalues, a double eigenvalue ±1, or real distinct eigen-
values. The eigenvalues of A are the roots of �2 � (trA)� + 1 = 0. They
can be nonreal if and only if trA = 0 or trA = ±1 (remember that the
trace trA is an integer). If trA = 0, the matrix has eigenvalues ±i, and
A4 = I. If trA = �1, then A3 = I, and if trA = 1, then A6 = I.

If trA = ±2, then ±1 is an eigenvalue, and a corresponding eigenvec-
tor provides a simple closed curve on the surface that is mapped to itself
(preserving or reversing the orientation).

If |trA| > 2, then A has two distinct real eigenvalues, necessarily irra-
tional: the contracting eigenvalue |�1| < 1 and the expanding eigenvalue
|�2| > 1. The directions of the eigenvectors provide invariant foliations on
R2/Z2, which are contracted and expanded by fA. These homeomorphisms
fA are called Anosov ; in [1], Anosov studied them and in particular showed
that they are structurally stable.

8.1 The classification theorem

Thurston’s classification theorem is an analogue of the classification of
homeomorphisms of tori; it applies to surfaces of any genus g � 2. Anosov
homeomorphisms are replaced by pseudo-Anosov homeomorphisms, which
also have invariant foliations that are expanded and contracted, as shown
in Figure 8.1.1. The leaves of these foliations are the horizontal and vertical
trajectories of a quadratic di↵erential q. Unlike the case of the torus, how-
ever, the foliations are singular. Examples of such singularities are shown
in Figure 5.3.1 in Volume 1.

inDefinition 8.1.1 (Types of homeomorphisms of surfaces) Let S
be a compact surface of genus g � 2, and let f : S ! S be an orientation-
preserving homeomorphism. The homeomorphism f is
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in
1. periodic if the iterate f�m is the identity for some m � 1
2. reducible if some nonempty multicurve is invariant under f (such

a multicurve is called a reducing multicurve)
3. pseudo-Anosov if there exist an element ' : S ! X of Teichmüller

space TS , a holomorphic quadratic di↵erential q 2 Q(X), and
K > 1 such that ' � f � '�1 is a Teichmüller mapping
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Figure 8.1.1 Left: A piece of a Riemann surface X with quadratic di↵erential

q, and a (blue) unit square in the natural coordinate for q. The two blue regions

at right are the image of the unit square at left by the same map f (strictly

speaking, by ' � f � '�1). The two pictures on the right are identical, but

with di↵erent metrics. Bottom right: A pseudo-Anosov homeomorphism from

(X, q) to (X, q); it stretches horizontal segments of curves by the stretch factor

� =
p

K, and shrinks vertical segments by the same factor, preserving area.

Top right: The same map seen as a Teichmüller map (X, q) ! (X, q/K) that

maps horizontal segments to horizontal segments of the same length, and shrinks

vertical segments by a factor of K. (Since the metric at upper right is smaller

than that at left, the (yellow) unit square at right is of course larger.)

Remark As suggested by Figure 8.1.1, it is usually better to think of
a pseudo-Anosov homeomorphism as an area-preserving homeomorphism
f : (X, q)! (X, q) rather than as a Teichmüller map f : (X, q)! (X, q/K).
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Suppose s2 = f(s1) and q('(s1)) 6= 0. Let z1 = x1 + iy1 and z2 = x2 + iy2

be natural coordinates for q near '(s1) and '(s2); in these coordinates
q = dz2

1 = dz2
2 . Then the map ' � f � '�1 is written⇣
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⌘
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, where � =

p
K. 8.1.1

The number � is called the stretch factor of f , also known as the dilatation
factor or expansion factor ; see Figure 8.1.1. Note that in these coordinates,
� and 1/� are the eigenvalues of the derivative of ' � f � '�1. 4

inProposition 8.1.2 A pseudo-Anosov homeomorphism and a reducible
homeomorphism cannot be homotopic.

Let q be a quadratic di↵erential on a Riemann surface. Recall from
Section 5.3 in Volume 1 (equation 5.3.2) that in a neighborhood of any point
where q 6= 0, there exists a natural local coordinate z such that q = dz2;
the element of length |dz| in such a coordinate is denoted |q|1/2.

Proof Let f : S ! S be pseudo-Anosov, so there exists a Riemann surface
X, a quadratic di↵erential q 2 Q(X), and a homeomorphism ' : S ! X
such that if g := ' � f � '�1, then g : (X, q) ! (X, q/K) is a Teichmüller
map. We will show that g is not homotopic to a reducible homeomorphism,
so that f isn’t either. With the metric |q|1/2, the image of a geodesic by
a Teichmüller map is a geodesic. A closed geodesic is made up of finitely
many segments, each with a slope. Suppose that a geodesic � is mapped
by g to a geodesic �0 homotopic to �. Then either � and �0 coincide, or
together they bound a straight cylinder for the metric |q|1/2. In either case,
the slopes of the segments making up � coincide with those making up �0.

However, a segment of slope a is mapped by g to a segment of slope
a/K. Thus the only slopes that can appear for a segment of �0 are 0
and 1. Further, the horizontal and vertical parts of � must be mapped
to the horizontal and vertical parts of �0, which must therefore have the
same lengths. This contradicts the fact that g expands horizontal lines and
contracts vertical ones. ⇤

Exercise 8.1.3 Show that for a pseudo-Anosov map, every horizontal
trajectory is dense. }

inTheorem 8.1.4 (Classification of homeomorphisms of compact
surfaces) Let S be a compact oriented surface of genus g, and let
f : S ! S be an orientation-preserving homeomorphism. Then f is ho-
motopic either to a periodic homeomorphism, or to a reducible homeo-
morphism, or to a pseudo-Anosov homeomorphism.


