
13
Hyperbolization of 3-manifolds

that fiber over the circle

One of the great accomplishments of nineteenth century mathematics was
showing that all surfaces of genus g � 2 admit hyperbolic structures. We
now present a 3-dimensional version of this theorem: Theorem 13.1.1. This
is one of the great accomplishments of twentieth century mathematics.

13.1 Introduction

Let S := S � Z be an orientable surface with S compact and Z finite; let
f : S ! S be an orientation-preserving homeomorphism. Denote by Mf

the mapping torus of f , i.e., the quotient of [0, 1] ⇥ S by the equivalence
relation that identifies (0, x) to (1, f(x)). Every 3-manifold that fibers over
the circle is of this form. The map f is called the holonomy map; it is
defined only up to isotopy and so is really an element of the mapping class
group MCG(S).

inTheorem 13.1.1 (Hyperbolization of 3-manifolds that fiber over
the circle) The 3-manifold Mf admits a complete hyperbolic structure
if and only if the holonomy map f is homotopic to a pseudo-Anosov
homeomorphism.

Proving this theorem will take the entire chapter. One direction – that if
Mf admits a hyperbolic structure, then f is homotopic to a pseudo-Anosov
homeomorphism – is easy; at least it follows easily from Theorem 8.1.4 on
the classification of homeomorphisms of surfaces. This is the content of
Section 13.2.

The proof of the other direction – that if f is homotopic to a pseudo-
Anosov map, then Mf carries a hyperbolic structure – is long and hard.
We discuss the main idea in Section 13.3. In Section 13.4 we prove the
compactness of Bers slices; Sections 13.5–13.8 are devoted to the double
limit theorem. We complete the proof of the hyperbolization theorem in
Section 13.9.

We begin with Example 13.1.3, which illustrates the theorem for the
complement of the figure-eight knot. We will need the notion of splitting
an n-dimensional manifold-with-boundary X along a properly embedded

242



13.1 Introduction 243

(n� 1)-dimensional submanifold S. We are interested in n = 3, splitting a
3-manifold along a properly embedded surface.

Splitting is just “cutting” along S, but cutting is a bit delicate to define,
so we adopt a minor variant. We will restrict to the case where S is two
sided, i.e., there is a nonvanishing normal vector field on S. In that case
there exists an embedding ' : S ⇥ [�1, 1] ! X such that '(x, 0) = x and
'(@S ⇥ [�1, 1]) is a subset of @X. The image N(S) := '(S ⇥ [�1, 1]) is
called a regular neighborhood of S in X. This neighborhood N(S) has a
top, denoted N(S)+, and a bottom, denoted N(S)�:

N(S)+ := '(S ⇥ {1}), N(S)� := '(S ⇥ {�1}). 13.1.1

inDefinition 13.1.2 (Split manifold) The manifold X split along S
is obtained by choosing an embedding ' : S ⇥ [�1, 1]! X as above and
deleting '(S ⇥ (�1, 1)). This “split manifold” will be denoted X^S .

The procedure is illustrated by Figure 13.1.1.
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Figure 13.1.1 Left: The neighborhood N(S) is the region between N(S)+ and

N(S)�. Right: The boundary of the “split manifold” X^S := X�'(S⇥(�1, 1)).

The surface S still exists but it is not part of the split manifold, unlike N(S)+

and N(S)�, which are part of @X^S .

Example 13.1.3 (The complement of the figure-eight knot fibers
over the circle) In Example 11.12.13 we showed that the complement
M of the figure-eight knot has a complete hyperbolic structure of finite
volume. In that example we wrote M as a union of two tetrahedra with
faces appropriately identified; here we will give a di↵erent decomposition.
We use this decomposition to show that M fibers over the circle with fiber
a punctured torus T . This makes it possible to compute the holonomy map
f : T ! T .

A Seifert surface is an orientable surface whose boundary is a knot. The
“ribbon” S in Figure 13.1.2, left, is a Seifert surface whose boundary is a
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figure-eight knot K. (It takes quite some work to check that the boundary
is a figure-eight knot.) Since the Euler characteristic �(S) of S is �1 and
@S is topologically a circle, S is a torus with a disc removed.

In Figure 13.1.2, right, and in Figure 13.1.3, the knot is thickened into
a solid torus TK . Our manifold M is the complement in S3 of int(TK) (the
interior of TK), so it is a compact manifold-with-boundary.

We will show that S is a fiber of a fibration M ! R/Z, i.e., that M split
along S is homeomorphic to the product S ⇥ [0, 1].
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Figure 13.1.2 Left: A Seifert surface S for the figure-eight knot; S is a surface

of genus 1 with one boundary component, the knot. (Although we refer to S as

a “ribbon”, no ribbon self-intersects as S does at x.) Right: The knot thickened

into a solid torus (green). The ribbon is now a properly embedded, incompress-

ible, boundary-incompressible surface S in the complement M of the open torus.

The boundary of the ribbon is a curve on the solid torus.
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Figure 13.1.3 Left: A 3-dimensional depiction of part of Figure 13.1.2, right.

Right: When M is split along S, the neighborhood N(S) is removed; the top

N(S)+ and bottom N(S)� remain as part of the boundary of M .

The 3-manifold M^S is the complement of a standard handlebody of
genus 2, as shown in Figure 13.1.4, left. Hence M^S is also a handlebody
of genus 2 in S3. So we can find two discs D1 and D2 in M^S ; they are
drawn as a pink disc bounded by a red circle and a purple disc bounded by
a purple circle. Splitting along these discs gives a ball (middle figure); this
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ball has a front and a back (what N(S)+ and N(S)� have become after
splitting along the discs) separated by a ring formed of four discs and four
green bands; the discs are the fronts and the backs of the discs D1 and D2.
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Figure 13.1.4 Left: If we split the complement M of the figure-eight knot along

the surface S, we obtain M^S , a handlebody of genus 2 (the complement of the

joined rings shown). Two discs D1, D2 in M^S are bounded by circles on its

boundary (a red circle on the top bounds D1 and a purple circle on the bottom

bounds D2). Middle: If we split M^S along D1 [ D2, we obtain a ball; the

torus has become four quadrilaterals (thick green). The two purple discs are the

front and back of the purple disc at left; the two pink discs are the front and

back of the pink disc. Right: As a polyhedron, this ball is the octagonal prism.

The top of the prism corresponds to the yellow region in the middle figure, and

the bottom corresponds to the back of the middle figure; the sides are the green

quadrilaterals, alternating with the red and purple circles.

The inside and the outside of the ball are homeomorphic. The ball has
the polyhedral structure of an octagonal prism (we think of the inside of the
prism being the outside of the ball). Think of the prism as having height
1, parametrized by [0, 1]; the top and the bottom of the prism are still the
two sides of the surface S, and to view them as tori with a disc removed,
we must glue the red sides together, and the purple sides together.

Now we can see our fibration: the fibers are the horizontal slices of
the octagonal prism. Each fiber has two red edges and two purple edges;
these edges are glued together in M^S , red to red and purple to purple, so
each fiber is a torus with a hole whose boundary is the union of the four
green edges, and these boundaries foliate the torus TK (the boundary of
the thickened knot); see Figure 13.1.5.

Thus M^S is homeomorphic to the product S ⇥ [0, 1], and the original
manifold M is obtained by gluing N(S)+ to N(S)� by the holonomy map.
Therefore M fibers over the circle [0, 1]/(0 ⇠ 1), with fibers once-punctured
tori; the boundaries of the fibers foliate the torus @M .


