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Rigidity theorems

In Chapter 11 we gave an overview of hyperbolic geometry in higher dimen-
sions, especially n = 3. In the first half of this chapter we prove three great
theorems due to Ahlfors, McMullen, and Mostow. Although the statements
look quite di↵erent, they are technically closely related: they are all con-
cerned with the construction of Beltrami forms on @H3 that are invariant
under a Kleinian group �. Since these theorems show that such Beltrami
forms are very restricted, they are called rigidity theorems.

In the second half of the chapter we prove that the central hypothesis
of McMullen’s rigidity theorem holds for quasi-Fuchsian groups. We need
this to prove the hyperbolization theorem for 3-manifolds that fiber over
the circle. Along the way we develop several topics, including laminations
and pleated surfaces, of great interest in their own right.

12.1 Boundary values of quasi-isometries

In this section we discuss results essential to the rigidity theorems. In Vol-
ume 1 (Corollary 4.9.4) we saw that quasiconformal maps H2 ! H2 extend
to R as quasisymmetric maps, and that, conversely, any quasisymmetric
map S1 ! S1 extends to a quasiconformal map D2 ! D2. In Chapter 5
we constructed a natural extension, the Douady-Earle extension. In this
section we go through the same program one dimension up: extending map-
pings H3 ! H3 to the sphere at infinity, and conversely extending mappings
from the sphere to itself to maps H3 ! H3.

The appropriate class of maps H3 ! H3 to consider is the class of quasi-
isometries.1

inDefinition 12.1.1 (Quasi-isometric map, quasi-isometry) Let
(X, dX) and (Y, dY ) be metric spaces, and let C and C0 be real numbers.
A map h : X ! Y is (C,C0)-quasi-isometric if for all pairs of points
x1, x2 2 X, we have

1
C

dX(x1, x2)� C0  dY

⇣
h(x1), h(x2)

⌘
 CdX(x1, x2) + C0. 12.1.1

A (C,C0)-quasi-isometric map h is a (C,C0)-quasi-isometry if it is
quasi-surjective: for all y 2 Y there exists x 2 X with dY (y, h(x))  C0.

1The fact that a quasi-isometric map is not necessarily a quasi-isometry makes
me uneasy, but the terminology is standard.
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Note that the +C0 on the right of inequality 12.1.1 means that a (C,C0)-
quasi-isometric map need not be continuous. It can “hop” around and has
no local regularity whatsoever. The constraint of the inequalities is relevant
when points are far apart: two points that are far apart aren’t mapped too
much closer together or too much further apart.

Note also that a (C,C0)-quasi-isometry is an isometry if C = 1 and
C0 = 0.

Taking x1 = x2 shows that we must have C0 � 0 for inequality 12.1.1 to
be satisfied. If the diameter of X is infinite, we must also have C � 1.

Quasi-isometric maps have no regularity; Examples 12.1.2 and Exercise
12.1.5 show that locally they are completely wild.

Example 12.1.2 (Quasi-isometries) Let (Z, dZ) be a metric space of
finite diameter D. For any metric space (X, dX) and any norm k k on R2,
consider the metric

dX⇥Z

⇣
(x1, z1), (x2, z2)

⌘
:=

���
⇣
dX(x1, x2), dZ(z1, z2)

⌘��� 12.1.2

on X ⇥Z. With this metric, the natural projection X ⇥Z ! X is a quasi-
isometry with C = 1 and C0 = D. In particular, any compact metric space
X is quasi-isometric to a point: the projection to a point is a quasi-isometry,
and so is the inclusion of a point. Thus the notion of quasi-isometry is really
useful only for spaces of infinite diameter. 4

Exercise 12.1.3 Show that f : R ! R given by f(x) = ax+b sin(x), with
a 6= 0, is a (C,C0)-quasi-isometry with C = sup(|a|, 1/|a|) and C0 = 2|b|,
but that the map C ! C defined by the same formula f(z) = az + b sin(z)
is not a quasi-isometry. }

Exercise 12.1.4 Show that the inclusion of the integers into the reals is
a (1, 0)-quasi-isometric map, but only a (1, 1/2)-quasi-isometry. }

Exercise 12.1.5 Let (X, dX) be a nonempty metric space and choose
✏ > 0. Choose a maximal set Z ⇢ X of points such that for any two distinct
points z1 and z2 in Z, we have dX(z1, z2) � ✏.

1. Using Zorn’s lemma, show that such a maximal set exists.
2. Show that the inclusion Z ! X is a quasi-isometry.
3. Order the points of Z and define h : X ! Z by mapping every point

of X to the nearest point of Z. (If there are several nearest points,
choose the point of lowest order.) Show that h is a (C,C0)-quasi-
isometry for appropriate C,C0, which you should compute. }

Exercise 12.1.6 Show that quasi-isometry is an equivalence relation on
metric spaces. Hint: Clearly the identity is a quasi-isometry, and it is easy
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to see that the composition of two quasi-isometries is a quasi-isometry. It
is a lot less clear that if h : X ! Y is a quasi-isometry, then there is a
quasi-isometry g : Y ! X. One possibility is to define a subset Z of X
that is maximal for the property that distinct points are at least C0(C +1)
apart. Then show that h : Z ! h(Z) is bijective, and that its inverse is a
quasi-isometry. Use Exercise 12.1.5 to finish. }

inDefinition 12.1.7 (Quasi-geodesic, quasi-geodesic ray) Let X
be a complete metric space. A (C,C0)-quasi-geodesic of X is a (C,C0)-
quasi-isometric map � : R ! X. If we take the domain of � to be [0,1)
rather than R, we call � a (C,C0)-quasi-geodesic ray .

Theorem 12.1.9 guarantees that in hyperbolic space, a quasi-geodesic
stays a bounded distance from a genuine geodesic; it must look like the
wide blue curve on the right of Figure 12.1.1. The theorem is related to
Theorem 2.3.13 (in Volume 1) on canoeing in the hyperbolic plane; in both
cases, the statement is not true in Euclidean space (see the left side of
Figure 12.1.1).
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Figure 12.1.1 Left: The orange curve � has equation r = e✓ in polar coor-

dinates. The successive turns 2k⇡  ✓  2(k + 1)⇡ of the spiral are similar.

Exercise 12.1.8 asks you to show that if � : [0,1)! � is parametrization by arc

length, then � is quasi-geodesic. Obviously � does not stay a bounded distance

from any geodesic ray. Right: By Theorem 12.1.9, a spiral in hyperbolic space is

not quasi-geodesic. Indeed, the distance between a and b along the spiral is much

greater than the length of the geodesic connecting them. In hyperbolic space, a

quasi-geodesic ray must look like the wide blue curve.

In Theorem 12.1.9, the formula for S is not important; what matters
is that s, ⇢, and especially S depend only on C and C0. The complicated
formula is an artifact of the proof. We will denote by dH(p,q) the hyperbolic
distance between p and q. To compute the distance between a point and
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a line, we take the distance to the closest point of the line; to compute the
distance between a line and a line, we look at the largest distance between
a point of one line to the other line.2

Exercise 12.1.8 Show that the curve
with polar equation r = e✓ parametrized
by arc length (Figure 12.1.1, left) is a
quasi-geodesic. Show that the curve with
polar equation r = ✓ parametrized by
arc length (see the figure at right) is not
quasi-geodesic.

inTheorem 12.1.9 (Quasi-geodesics and geodesics) For any C � 1
and C0 � 0, set

s := cosh�1�2(C + 1)2
�

12.1.3

S := s + (C + 1)2
�
2s + C0(4C + 5)

�
. 12.1.4

1. Let � : R ! Hn be a (C,C0)-quasi-geodesic. Then there is a
unique geodesic L ⇢ Hn such that for all t 2 R,

dH
�
�(t), L

�
 S. 12.1.5

2. Let � : [0,1) ! Hn be a (C,C0)-quasi-geodesic ray. Then
limt!1 �(t) exists in @Hn

, and if q denotes this limit point, and
L the geodesic ray through �(0) and ending at q, then

dH
�
�(t), L

�
 S for all t 2 [0,1). 12.1.6

The proof below actually works in the much greater generality of Gromov
hyperbolic spaces.

Proof of Theorem 12.1.9 The proof requires four results. The first is
Exercise 12.1.11; it really uses the fact that we are in hyperbolic geome-
try. The second is immediate and is the content of Exercise 12.1.12. The
third, Lemma 12.1.13, is quite delicate, and contains the main part of the
argument. The fourth, Lemma 12.1.14, is a fussy technicality.

inNotation 12.1.10 For any line L ⇢ Hn and any s � 0, we denote by
Ns(L) ⇢ Hn the closed s-neighborhood of L. For p,q 2 Hn, we denote
by [p,q] the arc of geodesic joining p to q. For any rectifiable curve
� ⇢ Hn, we denote by l(�) its length.

2This is the Hausdor↵ metric; it may be infinite since the lines are noncompact.


