
11
Geometry of hyperbolic space

This chapter gives a short introduction to the geometry of hyperbolic space
and to Kleinian groups. We begin in Sections 11.1–11.4 with hyperbolic
space and its group of automorphisms. Section 11.5 treats elementary and
non-elementary Kleinian groups. Section 11.6 defines the limit set of a
Kleinian group and gives some of its basic properties.

Section 11.7 explores the Jørgensen inequality, a beautiful and rather
mysterious inequality that exploits the discreteness of a Kleinian group in
an essential way. This leads in Section 11.8 to a fairly easy proof of the
Margulis lemma, which gives a complete description of the thin parts of
a hyperbolic 3-manifold. It is a 3-dimensional analogue of the collaring
theorem (Theorem 3.8.3) and extends the plumbing picture of hyperbolic
surfaces given in Section 3.8. I find the proof of Jørgensen’s inequality hard
to motivate, so I also give in Appendix D2 a di↵erent proof of the Margulis
lemma, which is cruder, but much more natural (and which generalizes to
higher dimensions).

Thurston’s hyperbolization theorems require not just thinking about in-
dividual Kleinian groups, but also thinking about their limits. There are
two notions of “limit of a sequence of Kleinian groups”, with surprisingly
di↵erent properties: algebraic limits, which are relatively easy to under-
stand, and geometric limits, which can be amazingly complicated. Alge-
braic limits are described in Section 11.9, geometric limits in Section 11.10.

Thurston’s second hyperbolization theorem requires the Klein-Maskit
combination theorems, which will eventually allow us to glue together hy-
perbolic manifolds. These theorems, proved in Section 11.11, also illustrate
the power of 3-dimensional thinking about Kleinian groups; it is quite hard
to see why the combined groups as defined are discrete if one sticks to the
action on the Riemann sphere.

Section 11.12 proves the 3-dimensional analogue of the Poincaré poly-
gon theorem (Theorem 3.9.5). I also discuss examples of Kleinian groups,
including some that come from arithmetic: the Bianchi groups PSL2(Od),
where Od is the ring of integers in the imaginary quadratic field Q(

p
�d).

These groups are the natural generalization of the Fuchsian group PSL2(Z);
they, their congruence subgroups, and the associated modular forms are of
such immense importance that it seems impossible to ignore them, even
though they are not directly relevant to the topics of this book.
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Finally, Section 11.13 defines geometrically finite Kleinian groups. These
are the groups that are classified by points of appropriate Teichmüller
spaces, leading in due course to the skinning lemma in Volume 4.

11.1 The hyperboloid model

It is possible to define n-dimensional hyperbolic geometry using a system
of axioms more or less like the axioms of Euclidean geometry. I find it
much more straightforward to define it as the geometry of a certain subset
of Rn+1 with an appropriate metric.

There are many models of n-dimensional hyperbolic space Hn, just as
there are many models of the hyperbolic plane; we will explore several in
the next section. The most natural – if not the easiest to visualize – is the
hyperboloid model , which imitates the definition of the unit sphere.

We use the symbol Hn to denote both the hyperboloid model and more
generally the abstract hyperbolic space with all its geometry (metric, lines,
planes, angles, etc.). In this volume we denote the hyperbolic plane by H2,
not by H, as in Volume 1. Similarly we write H2 and D2 rather than H
and D.

inDefinition 11.1.1 (n-dimensional hyperbolic space) Hyperbolic
n-dimensional space Hn ⇢ Rn+1 is the subset given by

�x2
0 + (x2

1 + · · · + x2
n) = �1, x0 > 0, 11.1.1

with the Riemannian metric induced by the pseudo-metric

�dx2
0 + dx2

1 + · · · + dx2
n ; 11.1.2

this metric is the infinitesimal hyperbolic metric.

Exercise 11.1.2 generalizes Exercise 2.4.2 in Volume 1.

Exercise 11.1.2 Check that Hn is a Riemannian manifold: the pseudo-
metric given by formula 11.1.2 induces a Riemannian metric on Hn, i.e.,
the quadratic form �dx2

0+dx2
1+ · · ·+dx2

n is positive definite on the tangent
spaces to Hn. }

Exercise 11.1.3 1. Check that the map t 7!
⇣

cosh t
sinh t

⌘
is an isometric

parametrization R ! H1.
2. Show that if x1, . . . , xn satisfy x2

1+· · ·+x2
n = 1, then the map R ! Hn

given by t 7!

0

BB@

cosh t
(sinh t)x1

...
(sinh t)xn

1

CCA is an isometric inclusion. }
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inNotation 11.1.4 We denote by En,1 the space Rn+1 with pseudo-metric

�dx2
0 + (dx2

1 + · · · + dx2
n). 11.1.3

The corresponding pseudo inner product is given by

hv,wi := �v0w0 + (v1w1 + · · · + vnwn). 11.1.4

In this notation, Hn is the subset of En,1 given by

Hn =
�
v 2 En,1 | hv,vi = �1 and v0 > 0

 
. 11.1.5

inDefinition 11.1.5 (Lines, planes, . . . in Hn) In hyperbolic space
Hn, lines, planes, or, more generally, k-dimensional subspaces are inter-
sections V \ Hn, where V is a (k + 1)-dimensional vector subspace of
En,1 such that V \Hn 6= ;.

Remark In Chapter 2, I consistently referred to “geodesics” rather than
“lines”; now I will usually speak of lines and planes. The word “geodesic”
encourages thinking extrinsically: putting oneself in the ambient En,1 and
looking at Hn “from the outside”. I hope that speaking of lines and planes
in Hn encourages a di↵erent way of thinking: living in Hn and seeing what
straight means intrinsically. Why encourage a change of attitude now?
For one thing, an ability to take both points of view is good in itself.
But besides, for H2 the ambient E2,1 is our ordinary space, with a “funny
metric”; it is fairly easy to imagine and draw. But E3,1, the ambient space
of H3, is 4-dimensional and much harder to imagine. It is usually easier to
imagine living in H3 than looking at H3 from R4. This approach has been
championed by Thurston; not everyone can aspire to his skill, but I think
everyone can gain from the attempt. 4

Remark The space En,1 may seem like a slightly pathological curiosity:
who cares about spaces with pseudo inner products? As briefly discussed
in Section 2.4, nothing could be further from the truth: when E3,1 is given
the Lorentz metric

�c2 dt2 + dx2 + dy2 + dz2, 11.1.6

(with c the speed of light), then E3,1 is Minkowski space, representing
spacetime. (Since the units of c are distance/time, all four terms have units
distance squared and it makes sense to add them.) Physicists, especially
those who specialize in relativity, systematically set c := 1; then Minkowski
space is exactly E3,1.
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Minkowski space and the Lorentz metric are the setting for the special
theory of relativity; they are also the local model for general relativity. As
such, they form the framework for much of modern physics, in particular
electromagnetism and gravitation; physicists wish that quantum theory
would fit into this framework too.

In the language of special relativity, points of E3,1 are called events. A
vector v connecting events is time-like if hv,vi < 0, space-like if hv,vi > 0.
A time-like vector v can point to the future (if its coordinate v0 is positive)
or to the past (if v0 is negative). Signals can travel from one event p1 to
another event p2 if p2 � p1 is a time-like vector pointing to the future.

The vectors v such that hv,vi = 0 are called light-like; the set of light-
like vectors is called the light cone C; the positive light cone C+ consists
of light-like vectors pointing to the future, i.e., with v0 > 0. A light-like
vector can point to the future or to the past, and a light ray can travel from
event p1 to event p2 if p2 �p1 is a light-like vector pointing to the future.

There is an immense literature on Minkowski space. Einstein’s funda-
mental question about events is: can they be connected by a light ray?
Essentially he says that the geometry of spacetime is completely controlled
by the answer to that question. 4

We will use the above language (time-like, space-like, light cone), in-
spired by physics, in En,1 for all n.

Automorphisms of Hn

The notation Aut, like Hom, depends on context: AutX is the group of
automorphisms X ! X: maps that preserve the structure of X. If X
is a metric space (for instance Hn), AutX consists of isometries; if X is a
Riemann surface (for instance P1), AutX consists of analytic isomorphisms;
if X is a vector space, AutX consists of linear isomorphisms. Theorem 1.8.2
in Volume 1 classified the automorphisms of simply connected Riemann
surfaces.

In this book we are interested in orientation-preserving automorphisms
of Hn, which we denote by Aut Hn (we won’t be interested in orientation-
reversing isometries, although in other settings, for instance, classifying
nonorientable manifolds, they are important).

Remark 11.1.6 We will see in this section that Aut Hn is identical to
SO+(En,1) ⇢ SLn+1 R, the set of (n + 1) ⇥ (n + 1) real matrices that
preserve the quadratic form �x2

0 + x2
1 + · · · + x2

n and preserve the positive
light cone and have determinant 1.

This is usually written Aut Hn = SO+(n, 1). Viewing an automorphism
as an element of Aut Hn or as an element of SO+(n, 1) is just a choice of


