Contents

Preface vii

Chapter 0 Preliminaries 1
 0.0 Introduction 1
 0.1 Reading mathematics 1
 0.2 Quantifiers and negation 4
 0.3 Set theory 6
 0.4 Functions 9
 0.5 Real numbers 17
 0.6 Infinite sets 22
 0.7 Complex numbers 25

Chapter 1 Vectors, matrices, and derivatives 32
 1.0 Introduction 32
 1.1 Introducing the actors: Points and vectors 33
 1.2 Introducing the actors: Matrices 42
 1.3 Matrix multiplication as a linear transformation 56
 1.4 The geometry of \mathbb{R}^n 67
 1.5 Limits and continuity 83
 1.6 Five big theorems 104
 1.7 Derivatives in several variables as linear transformations 119
 1.8 Rules for computing derivatives 137
 1.9 The mean value theorem and criteria for differentiability 145
 1.10 Review exercises for Chapter 1 152

Chapter 2 Solving equations 159
 2.0 Introduction 159
 2.1 The main algorithm: Row reduction 160
 2.2 Solving equations with row reduction 166
 2.3 Matrix inverses and elementary matrices 175
 2.4 Linear combinations, span, and linear independence 180
 2.5 Kernels, images, and the dimension formula 192
 2.6 Abstract vector spaces 207
 2.7 Eigenvectors and eigenvalues 219
 2.8 Newton’s method 232
 2.9 Superconvergence 252
 2.10 The inverse and implicit function theorems 258
 2.11 Review exercises for Chapter 2 277
Table of Contents

Chapter 3 Manifolds, Taylor polynomials, quadratic forms, and curvature

3.0 Introduction
3.1 Manifolds
3.2 Tangent spaces
3.3 Taylor polynomials in several variables
3.4 Rules for computing Taylor polynomials
3.5 Quadratic forms
3.6 Classifying critical points of functions
3.7 Constrained critical points and Lagrange multipliers
3.8 Probability and the singular value decomposition
3.9 Geometry of curves and surfaces
3.10 Review exercises for Chapter 3

Chapter 4 Integration

4.0 Introduction
4.1 Defining the integral
4.2 Probability and centers of gravity
4.3 What functions can be integrated?
4.4 Measure zero
4.5 Fubini’s theorem and iterated integrals
4.6 Numerical methods of integration
4.7 Other pavings
4.8 Determinants
4.9 Volumes and determinants
4.10 The change of variables formula
4.11 Lebesgue integrals
4.12 Review exercises for Chapter 4

Chapter 5 Volumes of manifolds

5.0 Introduction
5.1 Parallelograms and their volumes
5.2 Parametrizations
5.3 Computing volumes of manifolds
5.4 Integration and curvature
5.5 Fractals and fractional dimension
5.6 Review exercises for Chapter 5

Chapter 6 Forms and vector calculus

6.0 Introduction
6.1 Forms on \mathbb{R}^n
6.2 Integrating form fields over parametrized domains
6.3 Orientation of manifolds